III International workshop Methods and Technologies for Environmental Monitoring and Modelling: Emerging Signals, Risk Perception and Management. September 14 -16th. Matera

POLITECNICO MILANO 1863

Identification of shallow land instability precursory signals with a semi-distributed optical fiber strain sensor: an experimental method.

Prof. Monica Papini⁽¹⁾, Prof. Laura Longoni⁽¹⁾, Vladislav Ivov Ivanov⁽¹⁾, Davide Brambilla⁽¹⁾, Maddalena Ferrario⁽²⁾, Marco Brunero⁽²⁾

⁽¹⁾ Department of Civil and Environmental Engineering, Politecnico di Milano, Italy

⁽²⁾ Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy

To verify the efficiency of the fiber optic sensor as a monitoring tool for shallow landslides

Phenomena of relatively small dimensions but potentially desctructive, provoked by intense meteorological events

Val Tartano, July 18th 1987

The optical fiber

Prof Monica Papini et alii.

Classification of optical fiber sensors:

- Discrete: FBG (fiber Bragg Grating)
- Semi distributed: FBG in series (multiplexing)
- Distributed: OTDR (optical time domain reflectometry), BOTDA (Brillouin Optical Time Domain Analysis), BOTDR (Brillouin Optical Time Domain Reflectometry)

Interferometric - (semi distributed)

Shallow landslides

Analytical modelling

Forecast slopes' behaviour, Generate risk scenarios (SINMAP, SHALSTAB, etc.)

Physical modelling

Study the onset and evolution of landslides at a reduced scale, moderate costs and time expense

Analytical Models SLIP (Shallow Landslides Instability Prediction) Montrasio & Valentino (2008)

Safety factor, FS as a function of hydrology and geology

Prof Monica Papini et alii.

Physical modelling

- Water content
- Porosity
- Permeability

Infinite slope assumed: h/L < 1/10

Prof Monica Papini et alii.

Physical modelling

3 cm

15 cm

Georesistivimeter: distribution of water content

POLITECNICO MILANO 1863

Prof Monica Papini et alii.

Interferometric optical fiber sensors Michelson's Interferometer

Prof Monica Papini et alii.

Experimental setup: optical fiber

Prof Monica Papini et alii.

Simulations

POLITECNICO MILANO 1863

Prof Monica Papini et alii.

Prof Monica Papini et alii.

Date and time22 May 2017
Start: 17.02 End: 17.40Initial conditionsInclination: 40°, n= 0.54
Θ= 6.7%, Sr= 12%Precipitation54 mm/h for 10 mins
Rainfall paused for 10 mins
94.5 mm/h for 18 minsSLIPInstability at 30-35 min

1-32 min 40s

2-36 mins

Prof Monica Papini et alii.

Prof Monica Papini et alii.

Initial conditionsInclination: 40°
n = 0.54
Θ = 11.7%, Sr = 22%Precipitation48 mm/h for 10 mins
Rainfall paused for 10 mins
81 mm/h for 10 minSLIPInstability at 35 min

26 May 2017

Start: 15.43 End: 16.18

1-29 min

2- 30 min

Data and time

Prof Monica Papini et alii.

Results

Prof Monica Papini et alii.

The sensor forecasted the instability in advance as follows:

- With water content Sr = 20-22% FS ≈ 2.00
- With water content Sr = 12-13% FS ≈ 1.25
- Future prospects:
- To execute further simulations with different intensity and duration of the precipitation
- To execute simulations with heterogeneous terrain
- To evaluate the possibility to use alternative fiber optic sensors
- Inclinometers with fiber optics sensor

Thank you for your attention!

Prof Monica Papini et alii.